
Specification and Execution of Declarative
Policies for Grid Service Selection�

Massimo Marchi1, Alessandra Mileo2, and Alessandro Provetti3

1 DSI - Università degli studi di Milano
Milan, I-20135 Italy

marchi@dsi.unimi.it.
2 DICo - Università degli studi di Milano

Milan, I-20135 Italy
mileo@dico.unimi.it.

3 Dip. di Fisica - Università degli studi di Messina
Messina, I-98166 Italy

ale@unime.it

Abstract. We describe a modified Grid architecture that allows to
specify and enforce connection policies with preferences and integrity
constraints. This is done by interposing a policy enforcement engine
between a calling application and the relative client stubs. Such policies
are conveniently expressed in the declarative policy specification lan-
guage PPDL. In particular, PPDL allows expressing preferences on how
to enforce constraints on action execution. PPDL policies are evaluated
by translating them into a Logic Program with Ordered Disjunctions
and calling the psmodels interpreter. We describe an experimental
architecture that enforces connection policies by catching and filtering
only service requests. The process is completely transparent to both
client applications and Grid services. There are clear advantages in
having the connection logic expressed declaratively and externally to
applications.

Keywords: Grid Services. Customization. User preferences. Declarative
Policies. Answer Set Programming.

1 Introduction

In this article we how the standard Grid service architecture can be improved
by interposing a policy enforcement engine between a calling application and
the relative client stubs. Our policies can specify, among others, preferences
and prohibitions in the routing of remote invocations to Web services (WS).
� This work has been supported by i) MIUR COFIN project Formal Languages and

Automata: Methods, Models and Applications and ii) the Information Society Tech-
nologies programme of the European Commission, Future and Emerging Technolo-
gies under the IST-2001-37004 WASP project. The authors participate in M2AG:
Milan-Messina actions group: http://mag.dsi.unimi.it/

L.-J. Zhang and M. Jeckle (Eds.): ECOWS 2004, LNCS 3250, pp. 102–115, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Specification and Execution of Declarative Policies for Grid Service Selection 103

Therefore, with our solution WS preference and invocation is not hard-coded into
client applications but (declaratively) defined and enforced outside the clients,
so that they can be (de)activated and modified at runtime. Our architecture
is implemented so as remain transparent to both client application1 and the
invoked Web service.

The Policy Description Language with Preferences (PPDL), which is formally
described below, is a recent development of the PDL language. PDL is a result of
applied research at Bell Labs [9,12] on automated tools for network administra-
tion. PDL policies are high-level, i.e., abstract from the device they are applied
to. Even though PPDL has rather simple constructs and is prima-facie a less
expressive language than those traditionally considered in knowledge represen-
tation (Logic Programming, Description logics and others), it allows capturing
the essence of routing control and allows us to keep the so-called business logic
outside the code; so it can be inspected and changed any time transparently
from the applications, which won’t need rewriting. Finally, by adopting PPDL
we keep policies in a declarative, almost documentation form yet with auto-
mated and relatively efficient enforcement. Performance is the result of adopting
Answer Set Programming solvers [16] to execute the policy evaluation.

2 The Grid Service Architecture

Web services is a distributed technology that permits, in a worldwide network
environment, to build effective client/server applications. A set of well-defined
protocols, built mainly on XML and Uniform Resource Identifier(URI), is used
to describe, address and communicate with services, thus achieving a large in-
teroperability between different client and server implementations.

A typical WS may be viewed as a service dispenser (please see Figure 1
below). A generic client application, can consult a directory of available services,
called Universal Description, Discovery and Integration (UDDI) Registry, invoke
one of such services and retrieve the results in a fashion similar to that of usual
Web sessions.
While we cannot dwell on the details of the WS architecture, let us just notice
that each WS can be addressed by an URI. For our purposes, we will consider
URIs that are simple URLs. The Web Service Description Language (WSDL)
is used to describe how to communicate with WS, e.g., the format that service
requests should have, that of service responses, the possible error messages and
so on.

3 Our Experimental Architecture

In our experimental architecture we adopt Grid Services, an extension of Web
Services available in the Globus ToolKit 3 Framework [11]. Grid services provide
1 So far, however, we have considered only Java applications.



104 M. Marchi, A. Mileo, and A. Provetti

Fig. 1. The standard Grid architecture.

some graceful features not always supported by general Web Services, such as
dynamic instance service creation, lifetime management and notification.

Typically, communication between client and server is made through a cou-
pled object: client stub and server stub, that hides all low-level communication
activity. Starting from WSDL service description, it is possible to automatically
generate the code for client and server stubs. The policy module, which will be
described in detail below, is inserted in the architecture by modifying the class
that implements the client stub interface (see Figure 2 below).

In order to use a WS, a client application must go through two steps, which
are now described in some detail.

In step 1, the application creates a handler for managing communication with
the chosen service. Such handlers are in fact instances of the Java class that im-
plements the so-called client stubs. For each service hosted by a given server
an instance must be created that represents the service toward client applica-
tions. In fact, each service is addressed by an URI which reads something like
http://server.domain/Service/Math. Such URI says that server server.domain
is hosting service Service/Math.

In step 2, the client application actually calls the service by invoking the
corresponding instance and passing all the call arguments. The called instance
performs all the needed operation to communicate with the service, retrieves the
results and return them to the client.

Our policy module enters into play at step 1, where it catches all creations and
keeps a look-up table containing all available services. At that stage, URIs are
translated into corresponding instance handlers during communication between
policy module and client application. Moreover, the policy module catches all
service calls, it enforces the policy by invoking the external psmodels solver and
finally routes the call according to the policy results, thus achieving goals such
as reliability, load balancing etc.



Specification and Execution of Declarative Policies for Grid Service Selection 105

Fig. 2. PDL module location on WS client.

4 Introduction to PPDL

Developing and analyzing policies made of several provisions can be quite a
complex tasks, in particular if one wants to ensure some sort of policy-wide con-
sistency, that is for example, that no two different provisions of the policy result
in conflicting actions to be executed. In order to guarantee policy consistency,
declarative approaches to policy specification appear to be a promising viable
solution.

One such approach to specify policies in network context has been recently
proposed by Chomicki, Lobo, Naqvi [7,8,9] with the Policy Description Language
(PDL). In that context, a (device-independent) policy is a description of how
events received over a network (e.g., queries to data, connection requests etc.)
are served by some given network terminal or data server. PDL allows managers
to specify policies independently from the details of the particular device ex-
ecuting it. This feature is a great advantage when dealing with heterogeneous
networks, which is most often the case nowadays. We refer the reader to works
by Chomicki et al. [9] for a complete introduction and motivation for PDL in
network management. In order to introduce our PPDL, we will now give an
overview of its parent language PDL.

4.1 Overview of PDL

PDL can be described as an evolution of the Event-Condition-Action (ECA)
schema of active databases. A PDL program is defined as a set of policy rules Pi

and a consistency maintenance mechanism called monitor, composed by a set of
rules Mi of the form

Pi : e1, . . . em causes a if C
Mi : never a1, . . . , an if C ′



106 M. Marchi, A. Mileo, and A. Provetti

where C, C ′ are Boolean conditions, e1, . . . em are events, which can be seen as
input requests2 and a is an action, which is understood to be a configuration
command that can be executed by the network manager and actions a1 . . . an of
Mi are forbidden from executing simultaneously.

PDL assumes that events and actions are syntactically disjoint and that rules
are evaluated and applied in parallel. One may notice the lack of any explicit
reference to time. In fact, PDL rules are interpreted in a discrete-time framework
as follows. If at a given time t the condition is evaluated true and all the events
have been received from the network, then at time t+1 action a is executed. As
a result, we can see PDL policies as describing a transducer.

If the application of policies yields a set of actions that violates one of the
rules in the monitor then the PDL interpreter will cancel some of them, but
notice that selection of a particular action(s) to drop cannot be specified by the
language as is. However, Chomicki et al. describe two general solutions, called
action-cancellation and event-cancellation, respectively.

The declarative semantics of PDL policies is given by means of translation
into Answer Set Programming (ASP), namely in the expressive framework of
disjunctive logic programs. Also, thanks to that translation one can actually run
a PDL policy against a set of input events by feeding the translated version to an
ASP solver (see [16]) and inspecting the computed answer sets to find the actions
dictated by the policy. In our language PPDL we retain and extend Chomicki
et al. translation to get the same appealing features of a concise declarative
semantics and interpretation via ASP solvers.

4.2 PPDL: Policy Description Language with Preferences

It should be observed that in PDL it is possible to specify which actions cannot
execute together but it is not possible to specify what should be done in order to
avoid violations. In other words, the administrator cannot specify which actions
should preferentially be dropped, and what actions should be preferentially ex-
ecuted even in case of a violation. Indeed, in PDL the choice of which action to
drop is non-deterministic.

We believe that flexible policy languages, by which one can specify whether
and how to enforce constraints, are required. We have moved closer to achieve
such result by defining an extension of PDL [2,1] that allows users to express
preferences. This is done by reconstructing Brewka’s ordered disjunction con-
nective [4] into PDL, thus obtaining an output based on degrees of satisfaction
of a preference rule.

The resulting language is called PPDL: PDL with Preferences and it enables
users to specify preferences in policy enforcement (cancellation of actions) To
2 Also, non-occurrence of an event may be in the premise of the rule. To allow for

that, for each event e a dual event e is introduced, representing the fact that e has
not been recorded. This is called negation as failure(NAF) and it is different than
asserting ¬e, which means that an event corresponding to the negation of e has been
recorded. In this paper we will not consider negated events.



Specification and Execution of Declarative Policies for Grid Service Selection 107

describe a preference relation on action to be blocked when a constraint violation
occur, we introduced constraints with the following syntax:

never a1 × . . . × an if C. (1)

which means that actions a1, . . . , an cannot be executed together and –in case of
constraint violation– a1 should be blocked. If this is not possible (i.e. a1 must be
performed), block a2, else block a3 etc.; if all of a1, . . . , an−1 must be executed,
then block an.

PPDL policies receive a declarative semantics and are computed by trans-
lating them into Brewka’s Logic Programs with Ordered Disjunctions (LPODs).
Ordered disjunctions are a relatively recent development in reasoning about pref-
erences with Logic Programming and are subject of current work by [4,5], [6],
[15] and others. One important aspect of Brewka’s work is that preferred answer
sets need not be minimal. This is a sharp departure from traditional ASP and
in [1] we have investigated how adding preferences to PDL implies a trade-off
between user-preferences and minimality of the solutions. Notice that, both in
PDL and PPDL translations to ASP, minimality of answer sets corresponds to
minimality of the set of actions that get canceled in case of violations.

4.3 Overview of LPOD

As mentioned earlier, Logic Programs with Ordered Disjunctions have been in-
troduced by [4] in his work on combining Qualitative Choice Logic and Answer
Set Programming. A new connective, called ordered disjunction and denoted
with “×,” is introduced. An LPOD consists of rules of the form

C1 × . . . × Cn :− A1, . . . , Am, not B1 . . . , not Bk. (2)

where the Ci, Aj and Bl are ground literals. The intuitive reading [4] of the rule
(2) is:

when A1, . . . , Am are observed and B1, . . . , Bk are not observed, then
if possible deduce C1, but if C1 is not possible, then deduce C2,
...
if all of C1, . . . , Cn−1 are not possible, then deduce Cn instead.

The × connective is allowed to appear in the head of rules only; it is used to
define a preference relation so as to select some of the answer sets of a program
by using ranking of literals in the head of rules, on the basis of a given strategy
or context. The answer sets of a LPODs program are defined by Brewka as sets
of atoms that maximize a preference relation induced by the “×-rules” of the
program. Before describing the semantics, let us consider a simple example.

Example 1. (from [5]) Consider the Linux configuration domain, and the process
of configuring a workstation. There might be several kinds of different preference
criteria. First, there are usually several available versions for any given software



108 M. Marchi, A. Mileo, and A. Provetti

package. In most cases we want to install the latest version, but sometimes, we
have to use an older one. We can handle these preferences by defining a new
atom for each different version and then demanding that at least one version
should be selected if the component is installed. Second, a component may have
also different variants (e.g. a normal version and a developer version). A common
user would prefer to have the normal variant while a programmer would prefer
the developer version. Suppose there are three versions of emacs available. This
preferences can be modeled using rules expressed by LPODs syntax:

1. emacs − 21.1 × emacs − 20.7.2 × emacs − 19.34 :− installed − emacs.
2. dev − library × usr − library :− need − library, developer.
3. usr − library × dev − library :− need − library, not developer.

4.4 The Declarative Semantics of LPODs

The semantics of LPOD programs is given in terms of a model preference crite-
rion over answer sets. [4] shows how Inoue and Sakama’s split program technique
can be used to generate programs whose answer sets characterize the LPOD pref-
erence models. In short, a LPOD program is rewritten into several split programs,
where only one head appears in the conclusion. Split programs are created by
iterating the substitution of each LPOD rule (2) with a rule of the form:

Ci :−A1, . . . , Am,not B1, . . . ,not Bk,not C1, . . . ,not Ci−1 (3)

Consequently, Brewka defines answer sets for the LPOD program Π as the an-
swer sets of any of the split programs generated from Π.

There is one very important difference between Gelfond and Lifschitz’s an-
swer sets and LPOD semantics: in the latter (set-theoretic) minimality of models
is not always wanted, and therefore not guaranteed. This can be better explained
by the following example.

Example 2. Consider these two facts:

1. A × B × C.
2. B × D.

To best satisfy both ordered disjunctions, we would expect {A, B} to be the
single preferred answer set of this LPOD, even if this is not even an answer set
of the corresponding disjunctive logic program (where “×” is replaced by “∨”).
Indeed, according to the semantics of [10] {B} satisfies both disjunctions and is
minimal.

To sum it up, since minimality would preclude preferred answer sets to be con-
sidered dealing with preferences implies adopting non-minimal semantics.

LPOD programs are be interpreted by a special version of the solver Smodels,
called Psmodels, which is presented in [5]. In a nutshell, LPOD programs are
translated (by the lparse parser) into equivalent (but longer) ASP programs and
then sent to Psmodels.
Now, we can go back to policies and describe how PPDL is mapped into LPOD.



Specification and Execution of Declarative Policies for Grid Service Selection 109

4.5 Translating PPDL Policies into Answer Set Programming

Starting from a set of preference cancellation rules (1) we define LPOD ordered
blocking rules as follows:

block(a1) × . . . × block(an) :− exec(a1), . . . , exec(an), C. (4)

Since the PPDL-to-LPOD translation described above does not provide a mech-
anism for avoiding action block, the resulting program is deterministic: we would
obtain answer sets where the leftmost action of each rules of the form (4) that
fires is always dropped.

As a result, in [1] we argued that a simplified version of rule (4) can be
formulated as follows:

block(a1) :− exec(a1), . . . , exec(an), C. (5)

This translation realizes a simple, deterministic preference criteria in canceling
action violating a constraint, according to the given strategy: for each constraint,
we put as leftmost action an action that shall always be dropped.

However, ordered disjunctions are appealing precisely when some actions may
not be blocked. This can be specified by using a new rule called anti-blocking rule
which is added to the language.

Anti-blocking rules. This rules allow users to describe actions that cannot be
filtered under certain conditions. The syntax of anti-blocking rule is as follows:

keep a if C. (6)

where a is an action that cannot be dropped when the boolean condition C is
satisfied. This rule is applied whenever a constraint of the form (1) is violated,
and a is one of the conflicting actions. In ASP, anti-blocking rules are mapped
in a constraint formulated as follows:

:− block(a), C. (7)

which is intended as action a cannot be blocked if condition C holds. Notice that
if we want to control the execution of action a, postulating that under condition
C action a is executed regardless, then we should write, in PPDL:

∅ causes a if C.
keep a if C.

that will be translated in LPOD as follows:

exec(a) :− C.
:− block(a), C.

Unlike in traditional PDL, where actions are strictly the consequence of events,
by the causes described above we allows self-triggered or internal actions. We



110 M. Marchi, A. Mileo, and A. Provetti

should mention that, even without internal events, a PPDL policy with monitor,
blocking and anti-blocking rules, may be inconsistent. Consider the following
example referred to allocation of resource res1 among two different users usr1
and usr2.

Example 3. Take policy Pres:

Pres = { need usr1 res1 causes assign usr1 res1.
need usr2 res1 causes assign usr2 res1. }

and a preference monitor Mres saying that resource res1 cannot be as-
signed both to usr1 and usr2. In particular, it is preferable to drop the
request of usr2, supposed he/she is less important than usr1. Moreover,
if one of the users has an urgent need, than his/her request should not

be dropped.
Mres = { never assign usr1 res1 × assign usr2 res1.

keep assign usr1 res1 if urgent usr1.
keep assign usr2 res1 if urgent usr2. }

where

urgent usr1 and urgent usr2 stand for Boolean conditions. Both Pres and Mres

are translated the following LPOD, named πres:

exec(assign usr1 res1) :− occ(need usr1 res1).
exec(assign usr2 res1) :− occ(need usr2 res1).
block(assign usr2 res2) × block(assign usr2 res1) :− exec(assign usr1 res1),

exec(assign usr2 res1).
:− block(assign usr1 res2), urgent usr1.
:− block(assign usr2 res2), urgemt usr2.

Now, suppose that events need usr1 res1 and need usr2 res1 has occurred. It is
clear that if both the clients have urgent requests, πres is inconsistent so the pol-
icy+monitor application yields an error and the requests should be transmitted
again.

The simple example above shows that if we want to use prioritized semantics
in extended PPDL, we have to be careful in introducing anti-blocking rules, in
order to ensure that at least one action can be blocked whenever a constraint is
violated.

5 The PPDL Specification of Grid Service Selection

This section gives a complete example of a Grid service scenario based on our
architecture. In our Department there are three servers that implement grid
services. Here we consider a grid service called math available on all three servers.
The math service consists, essentially, of arithmetic functions. Clearly, we get
the exact same service from all services, even though the implementation can
vary to i) optimize performance on certain inputs and ii) adapt to the particular
platform where the service is run.



Specification and Execution of Declarative Policies for Grid Service Selection 111

In our scenario, several details regarding location and interface of the service
are known and are made available for policy enforcement through tables. The
following lookup table3 is an example of a PPDL specification of the services we
have access to:

Table 1. A service lookup table

URL service
mag.usr.dsi.unimi.it/math mag.math
zulu.usr.dsi.unimi.it/math mag.math

grid001.usr.dsi.unimi.it/math mag.math
grid002.usr.dsi.unimi.it/math mag.math

In the context of the lookup table above, we have designed the PPDL policy
described next: The goal is is to maximize computation per time unit, while
keeping into account the sharp differences in performance among our servers.

P1: req(I,M,L1,L2) causes send(Url,I,M,L1,L2)
if table(Url,I), M�=m-plus.

P2: req(I,M,L1,L2) causes send(Url,I,m-plus,L1,L2)
if table(Url,I), M=m-plus, L1≤10, L2≤10.

P3: request(I,M,L1,L2) causes send(Url,I,m-fastplus,L1,L2)
if table(Url,I), M=m-plus, L1 > 10.

P4: request(I,M,L1,L2) causes send(Url,I,m-fastplus,L1,L2)
if table(Url,I), M=m-plus, L2 > 10.

M1: never send(grid001,I,M,L1,L2) × send(grid002,I,M,L1,L2)
if M=m-plus.

M2: never send(zulu,I,M,L1,L2) if M=m-fastplus.
M3: never send(grid002,I,M,L1,L2) × send(grid001,I,M,L1,L2)

if M=m-fastplus, L1 > 20.
M4: never send(grid002,I,M,L1,L2) × send(grid001,I,M,L1,L2)

if M=m-fastplus, L2 > 20.
M5: never send(grid001,I,M,L1,L2) × send(grid002,I,M,L1,L2)

if M=m-fastplus, L1≤20, L2≤20.

Rule P1 simply says that an invocation of a method other than m-plus method,
is sent to Web service where, according to the lookup table, such service is
available. Policy rules P2 to P4 practically define the method m-plus and say
that for such method, if at least one parameter is greater than 10, then a faster
method called m-fastplus should be (transparently) invoked.

Monitor rules M1 to M5 tell how routing should be preferably performed
according to the size of the parameters and the computational power of the
3 There are several ways for creating the lookup table. For instance, it may be obtained

by consulting the UDDI directory on the Web.



112 M. Marchi, A. Mileo, and A. Provetti

server. In particular, M1 says that the m-plus method invocation should be
blocked on server grid001 with higher preference with respect to grid002, as
the first one is faster than the second one, and we want it not to be busy with
simple computation. M2 prevents the client from sending a m-fastplus method
invocation to the slow zulu server.

Rules M3 to M5 tell the client how to route m-fastplus method invocation
among the faster servers, according to the size of the parameter: if both the
parameters are less or equal to 20, a method invocation is send to grid002.
Otherwise, it is routed to grid001, which is supposed to perform better with
high values of the parameters.

5.1 The Software Layers

In general, a PPDL policy specification can be animated by the following step-
by-step procedure outlined in Figure 3) below.

Fig. 3. The software layers of our architecture

First, the PPDL policy is translated into an Answer Set Program, following the
encoding defined in [2]. Second, the resulting ASP program is fed to a solver
that computes one of its answer sets. These answer set will contain, among
other uninteresting atoms, a set of instances of the execute(a i) predicate that
describe the actions that should be executed next. An extractor takes the ASP
solver output and extracts the a1, . . . an actions to be executed, then it examines
the action name and calls the appropriate routines, that will invoke the chosen
client stub.

5.2 The Complete Architecture

As we have mentioned above, the architecture in Figure 4 is obtained by mod-
ifying the GT3 class, ServiceLocator, that creates an object instance for each
client-grid connection. Each service is identified by an URL and provides a set
of operation, or methods. In our architecture, the Trapper routine described in
Figure 4 catches all outgoing calls made by the client application.



Specification and Execution of Declarative Policies for Grid Service Selection 113

Fig. 4. The standard Grid architecture.

The Trapper method stores the URLs of available services in a lookup table
and use them to pass from the Java object that represent the stub to the relative
URL and vice versa. When the client application perform a method invocation,
Trapper extract from that call i) the URL of the service, ii) the requested in-
terface and method and iii) the arguments that should be passed to the remote
method.

Next, Trapper translates all real names to symbolic values used in the PPDL
policy. In our solution this step is performed by means of an external environment
specification file, environment.h.

Now, the PPDL policy specification, policy.ppdl, needs to be translated to
an LPOD program in order to apply it. This step is performed by Translator.

Next, Decorator assembles all call data, the policy and environment spec-
ifications together into a complete LPOD program. An external module, the
lparse+psmodels box seen in Figure 4, interprets this program and extracts one
(or more) answer set. The answer set contains the a set accept atoms describing
executable, non-blocked actions.

Extractor extracts from the solution a subset of non-redundant actions by
non-deterministically choosing an action from tie-breaks. Finally Trapper trans-
lates back the solution into a real client-stub call.

6 Conclusions and Open Problems

In this article we have described a new, experimental-yet-functional Grid service
architecture that, in our opinion, has several advantages, thanks to having the
connection logic expressed outside the application and in declarative format.



114 M. Marchi, A. Mileo, and A. Provetti

Our solution is transparent to the standard Grid service architecture and can
be described as bringing to Grid services the same advantages that triggers and
constraints bring to relational databases and their client applications.

Our implementation of the architecture is still in its infancy and several of the
software layers may be improved with more sophisticated implementation and
optimization. However, automatic mapping from PPDL to LPOD has already
been described in details, and it is rather straightforward. We are working on a
simple user-friendly interface to help users in writing and compiling their PPDL
policies. Meanwhile, our experiments are suggesting that one important issue
that needs to be investigated further is related to method calls routing when
multiple solution are obtained.

The PPDL module may return different routing possibilities4 for each method
call, all this solution being equally preferred according to the PPDL semantics.
Only one server invocation should be done for each call. In our prototype the
one invocation to execute is chosen non-deterministically among all the possible
ones. Clearly, when several parallel method calls are requested by the client
application, it is important to have a method to distribute the calls among
all available servers according to some criteria, e.g., performance improvement,
overload avoidance or reliability. This may be done by using some planning
techniques or by defining a further (internal) level of policy specification.

Acknowledgments. Thanks to A. Bertoni, E. Bertino, G. Gonzales and M.
Ornaghi for useful discussions on this subject.

References

1. Bertino, E., Mileo, A. and Provetti, A., 2003. User Preferences VS Minimality
in PPDL. In Buccafurri F. (editor), Proc. of AGP03, APPIA-GULP-PRODE.
Available from http://mag.dsi.unimi.it/PPDL/

2. Bertino E., Mileo A. and Provetti A., 2003. Policy Monitoring with User-
Preferences in PDL. Proc. of NRAC 2003 IJCAI03 Workshop on Reasoning about
Actions and Change.
Available from http://mag.dsi.unimi.it/PPDL/

3. Bertino, E., Mileo, A. and Provetti, A., 2003. PDL with Maximum Consistency
Monitors. Proc. of Int’l Symp. on Methodologies for Intelligent Systems (ISMIS03).
Springer LNCS. Available from http://mag.dsi.unimi.it/PPDL/

4. Brewka, G., 2002. Logic Programming with Ordered Disjunction. Proc. of AAAI-02.
Extended version presented at NMR-02.

5. Brewka, G., Niemelä I and Syrjänen T., 2002. Implementing Ordered Disjunction
Using Answer Set Solvers for Normal Programs. Proc. of JELIA’02. Springer
Verlag LNAI.

6. Buccafurri F., Leone L. and Rullo P., 1998. Disjunctive Ordered Logic: Semantics
and Expressiveness. Proc. of KR’98. MIT Press, pp. 418-431.

4 Notice that each possibility is represented by an accept(...) atom.



Specification and Execution of Declarative Policies for Grid Service Selection 115

7. Chomicki J., Lobo J. and Naqvi S., 2000. A logic programming approach to con-
flict resolution in policy management. Proc. of KR2000, 7th Int’l Conference on
Principles of Knowledge Representation and Reasoning, Morgan Kaufmann, pp
121–132.

8. J. Chomicki, J. Lobo, 2001. Monitors for History-Based Policies. Proc. of Int’l
Workshop on Policies for Distributed Systems and Networks. Springer, LNCS 1995,
pp. 57–72.

9. Chomicki J., Lobo J. and Naqvi S., 2003. Conflict Resolution using Logic Pro-
gramming. IEEE Transactions on Knowledge and Data Engineering 15:2.

10. Gelfond, M. and Lifschitz, V., 1991. Classical negation in logic programs and
disjunctive databases. New Generation Computing: 365–387.

11. Web location related to Web Services technologies.
Globus Toolkit Framework: http://www.globus.org/
World Wide Web Consortium: http://www.w3c.org/

12. Lobo J., Bhatia R. and Naqvi S., 1999. A Policy Description Language, in
AAAI/IAAI, 1999, pp. 291–298.

13. Marchi M., Mileo A. and Provetti A., 2004. Specification and execution of policies
for Grid Service Selection. Posters at ICWS2004 conference. IEEE press. Available
from http://mag.dsi.unimi.it/PPDL/

14. Marchi M., Mileo A. and Provetti A., 2004. Specification and execution of poli-
cies for Grid Service Selection. Poster at Int’l Conference on Logic Programming
(ICLP04) Spinger LNCS. Available from http://mag.dsi.unimi.it/PPDL/

15. Schaub T., and Wang K., 2001. A comparative study of logic programs with pref-
erence. Proc. of Int’l. Joint Conference on AI, IJCAI-01.

16. Web location of the most known ASP solvers.
Aspps: http://cs.engr.uky.edu/ai/aspps/
CMODELS: http://www.cs.utexas.edu/users/tag/cmodels.html
DLV: http://www.dbai.tuwien.ac.at/proj/dlv/
NoMoRe: http://www.cs.uni-potsdam.de/˜linke/nomore/
Smodels: http://www.tcs.hut.fi/Software/smodels/
PSmodels: http://www.tcs.hut.fi/Software/smodels/priority/


	Introduction
	The Grid Service Architecture
	Our Experimental Architecture
	Introduction to PPDL
	Overview of PDL
	PPDL: Policy Description Language with Preferences
	Overview of LPOD
	The Declarative Semantics of LPODs
	Translating PPDL Policies into Answer Set Programming

	The PPDL Specification of Grid Service Selection
	The Software Layers
	The Complete Architecture

	Conclusions and Open Problems

