
RAIRO-Inf. Theor. Appl. 40 (2006) 371-388

DOI: 10.1051/ita:2006012

SOLVING MAXIMUM INDEPENDENT SET
BY ASYNCHRONOUS DISTRIBUTED HOPFIELD-TYPE

NEURAL NETWORKS

Giuliano Grossi
1
, Massimo Marchi

1

and Roberto Posenato
2

Abstract. We propose a heuristic for solving the maximum indepen-
dent set problem for a set of processors in a network with arbitrary
topology. We assume an asynchronous model of computation and we
use modified Hopfield neural networks to find high quality solutions.
We analyze the algorithm in terms of the number of rounds necessary
to find admissible solutions both in the worst case (theoretical anal-
ysis) and in the average case (experimental Analysis). We show that
our heuristic is better than the greedy one at 1% significance level.

Mathematics Subject Classification. 68W15, 90C59, 05C69.

1. Introduction

The Maximum Independent Set problem (MIS) requires finding the largest in-
dependent set in a graph G, i.e. the maximum subset of vertices of G such that
no two vertices are joined by an edge. This is one of the first problems shown
to be NP-hard [17] and, according to the result of Feige et al. [7] for the Max-
imum Clique problem (the same problem as MIS on the complementary graph),
even approximating MIS within a constant factor is NP-hard. In particular, if

Keywords and phrases. Max independent set, hopfield networks, asynchronous distributed
algorithms.

1 Dipartimento di Scienze dell’Informazione, Università degli Studi di Milano, via Comelico
39, 20135 Milano, Italy; grossi@dsi.unimi.it
2 Dipartimento di Informatica, Università degli Studi di Verona, strada le grazie 15, 37134
Verona, Italy.

c© EDP Sciences 2006

Article published by EDP Sciences and available at http://www.edpsciences.org/ita or http://dx.doi.org/10.1051/ita:2006012

http://www.edpsciences.org/ita
http://dx.doi.org/10.1051/ita:2006012

372 G. GROSSI, M. MARCHI AND R. POSENATO

NP �= ZPP1, no polynomial time algorithm can approximate MIS within a factor
n1−ε for any ε > 0, where n is the number of vertices of the graph [13].

This problem is relevant for many theoretical research areas and practical ap-
plications. For instance, the clustering problem for peer-to-peer mobile wireless
networks can be easily reduced to the problem of finding a maximum independent
set of nodes in the network graph [9].

In this paper we propose an asynchronous distributed algorithm for the MIS
problem, synchronous variant of which has been discussed in [11]. The original
method from which we derive both distributed algorithms is based on a finite
sequence of discrete-time Hopfield networks [14], the attractor sequence of which
converges to an admissible locally optimal solution [4]. The networks generated
by the algorithm are progressively determined by a simple and efficient weights
updating rule which controls the relaxation process in order to allow the system
to escape from not admissible local minima.

This method always ensures the finding of an admissible solution; moreover, the
quality of the solution is high as shown in the simulation results of previous works
and ratified here (i.e., in the distributed case). Since Hopfield neural networks do
not guarantee that an admissible solution to constrained optimization problems
will be found, many researches have been focused on improving the original model
in order to obtain a high percentage of admissible high quality solutions. One of the
most relevant works has been done by Li [19], who proposes a new method to solve
constrained optimization problems combining augmented Lagrange multipliers and
Hopfield networks. To corroborate the fact that our algorithm does not suffer
the dilemma between quality and convergence, we experimentally show that our
weights updating rule is more effective in finding good solutions than the Li’s
method.

We refer to an asynchronous model of computation in which the topology of
the network of processors is described by an arbitrary graph. We do not make any
assumptions except for the following: the time is discrete, the message delivering
and receiving is done within a fixed time and the time taken for local computations
is considered to be negligible. We define the time complexity in terms of the rounds
needed by the system to find a solution. In every round a processor is allowed to
send messages to the processors linked with it. We determine the time complexity
both in the worst case (theoretical) and in the average case (experimental).

To test the solution quality of our algorithm, we experimentally compare it with
a very good probabilistic heuristic derived by the so called Ant Colony Optimiza-
tion technique [18], with the standard greedy algorithm, widely used in distributed
applications, and with a very fast self-stabilizing algorithm for asynchronous dis-
tributed system [15].

The solution quality found by our algorithm on various randomly generated
instances shows it has on average better performances than the other algorithms
mentioned here at 1% significance level.

1The class of problems RP∩coRP, denoted by ZPP, is the class which admits polynomial-time
randomized algorithms with zero probability of error (Las Vegas algorithms) [21].

SOLVING MIS BY ASYNCHRONOUS DISTRIBUTED HOPFIELD-TYPE NN 373

2. Related works

With reference to the MIS problem, several heuristic techniques have been de-
veloped in recent years and most of them have a good ability to find good approxi-
mate solutions for the problem. These techniques include simulated annealing [5],
neural networks [4], tabu search [3], greedy randomized adaptive search (GRASP)
[8], genetic and evolutionary algorithms [1, 20] and, more recently, Ant Colony
Optimization [18]. All these techniques allow us to find approximate solutions to
the problem in polynomial-time.

In the field of distributed algorithms, many heuristics have been developed to
solve a related problem called Maximal Independent Set problem that consists in
finding a maximal independent set but not the largest. This problem is solvable
in polynomial time by a very simple greedy algorithm2. The interest for Maximal
Independent Set problem is due the fact that in many applications it is more
important to find a maximal independent set quickly than to find the largest one.
In [15], the authors present a fault-containing self-stabilizing algorithm for the
Maximal Independent Set problem in asynchronous distributed systems and they
claim that it is the most efficient algorithm known at the publication time. In [10]
a fast synchronous algorithm is shown for ad hoc networks of constant dimension
but with variable topology. Finally, in [2] a greedy distributed algorithm for the
efficient determination of a maximal weighted independent set for wireless network
is proposed and analyzed.

3. Preliminaries

We consider arbitrary undirected graphs G = 〈V, E〉, where V = {1, . . . , n} is
the set of vertices and E ⊆ V ⊕V (not ordered pairs) is the set of edges e = {i, j}.
For graph G, a subset S ⊆ V of vertices is an independent set if and only if every
pair of distinct vertices are not joined by an edge in E. An independent set is
maximal if it is not a subset of another independent set.

The MIS problem is a maximization problem which consists in finding a maxi-
mum independent set (among the maximals) of a given graph G. Formally

Max Independent Set (MIS)
Instance: Graph G = 〈V, E〉.
Solution: An independent set of G, i.e., a subset S ⊆ V such that no two

distinct vertices in S are joined by an edge in E.
Measure: Cardinality of the independent set, i.e., |S|.
Goal: MAX.

Let A = (aij) denote the adjacency matrix of G and di the degree of the vertex i.
Unlike many formulations introduced for MIS problem, we reduce it to an integer

2The algorithm starts with an empty set V . Then it searches for a vertex v that is not
connected to any vertex in V and if such v is found, adds v to V . The algorithm stops when it
cannot find v not connected to any vertex in V . This results in an independent set that is not
contained in any larger independent set.

374 G. GROSSI, M. MARCHI AND R. POSENATO

linear programming problem subject to quadratic constraints. To this end, let S ⊆
{1, . . . , n} and let (x1, . . . , xn) be the characteristic vector of S. Then

∑
i<j aijxixj

represents the number of edges in E with end-points in S. It is easy to show that
S is an independent set if and only if

∑
i<j aijxixj = 0.

Based on this remark, the MIS problem can be expressed as:

maximize ΨG(x) = α
n∑

i=1

xi

subject to ΩG(x) =
∑

{i,j}∈E

xixj = 0

x ∈ {0, 1}n,

(P)

where α ≥ 1 is an integer constant. The role of α is extremely important because
on one hand it preserves the local optima of the equivalent and more natural
program (that with α = 1), whereas on the other hand it strengthens the ability
of the neural heuristic to find better solution on average.

From now on, we will focus on the function Φ : {0, 1}n → N+ defined as:

Φ(x) = “# vertices”− “# unsatisfied constraints” = ΨG(x) − ΩG(x).

A property of Φ that we will use in the design of the algorithm concerns the
relation between its maximum value and the cost of the optimum solution of the
instance, as described in the following proposition.

Proposition 3.1. Given a graph G and y ∈ {0, 1}n such that ΩG(y) = 0; y is
an optimum solution for MIS problem if and only if Φ(y) = sup

ΩG(x)=0

Φ.

4. ISHN: overview of the algorithm

In this section we present an approximation algorithm for MIS based on the
discrete Hopfield networks [14] for which we briefly report the main results.

We denote a Hopfield network R of n neurons with states in {0, 1} by the
pair R = 〈W, λ〉, where W = (wij)n×n is the (symmetric) weight matrix and
λ = (λi)1×n the threshold vector; both the matrix and the vector have integer
components.

We consider the discrete-time dynamics with sequential updating. Let Ui(t) be
the state of the neuron i at time t, the dynamics is formally described as follows:

Ui(t + 1) = HS

⎛
⎝ ∑

1≤j<i

wijUj(t + 1) +
∑

i<j≤n

wijUj(t)− λi

⎞
⎠ i = 1, . . . , n, (1)

where HS is the heavy side step function.

SOLVING MIS BY ASYNCHRONOUS DISTRIBUTED HOPFIELD-TYPE NN 375

Under these assumptions, the following Lyapunov function, called energy, can
be associated to every network R = 〈W, λ〉:

ER(U1, . . . , Un) = −1
2

∑
i�=j

wijUiUj +
∑

i

λiUi.

Given an initial condition U(0) = U0, equation (1) describes a unique trajectory
{U(t)}t≥0, the last state of which represents a local minimum for the energy
function. An upper bound to the length lR,U0 of the transient is given in the
following theorem.

Theorem 4.1. The trajectory {U(t)}t≥0 generated by the Hopfield network R =
〈W, λ〉 with initial condition U0 admits an attractor ỹ, and the length lR,U0 of the
transient is bounded by

lR,U0 ≤ max
U
{ER(U)} −min

U
{ER(U)} .

We denote by ỹ the attractor of R initialized by U0.

If equation (1) is modified as

Ui(t + 1) = HS

⎛
⎝−

∑
1≤j<i

wijUj(t + 1)−
∑

i<j≤n

wijUj(t) + λi

⎞
⎠ i = 1, . . . , n, (2)

then the trajectory {U(t)}t≥0 admits as attractor a point of local maximum for
the energy E .

We are now able to present an algorithm, called Independent-Set-Hopfield-

Nets (ISHN), that finds approximate solutions for (P). This algorithm is based
on a sequence of discrete Hopfield networks in which the neurons correspond to
the vertices of G.

The sequence {Rk}k≥0 of Hopfield networks is inductively defined by

(1) R0 is the network with energy function Φ0(y) = ΨG(y) − ΩG(y), i.e.
W = A and λ = (α, α, . . . , α), and ỹ(0) is the attractor of R0 initialized
with (1, . . . , 1);

(2) let ỹ(k) be the attractor of the network Rk initialized with ỹ(k−1) (k > 0);
Rk is the network with energy function

Φk(y) = Φk−1(y) −
∑

ỹ
(k)
i =ỹ

(k)
j =1

aijyiyj. (3)

For all k, the set {{i, j} | {i, j} ∈ E and ỹ
(k)
i = ỹ

(k)
j = 1} is the set of

constraints violated by the attractor ỹ(k).

376 G. GROSSI, M. MARCHI AND R. POSENATO

The algorithm consists of two alternating phases: one is the evolution of the current
network, the other is the weights updating when the current network has reached
an attractor. Both phases are repeated as long as there are violated constraints.

ISHN is sketched in Algorithm 1.

Algorithm 1 ISHN

Input: a graph G = 〈V, E〉, an integer α > 0
R0 ← Hopfield net with energy Φ0(y) = ΨG(y) − ΩG(y), i.e. W = A and
λ = (α, α, . . . , α);
ỹ(0) ← attractor of R0 initialized with (1, . . . , 1)
F0 ←

{
{i, j} | {i, j} ∈ E and ỹ

(0)
i = ỹ

(0)
j = 1

}

k ← 0
while Fk �= ∅ do

k ← k + 1
Rk ← Hopfield net with energy Φk(y) = Φk−1(y) −

∑
{i,j}∈F

yiyj

ỹ(k) ← attractor of Rk initialized with ỹ(k−1)

Fk ←
{
{i, j} | {i, j} ∈ E and ỹ

(k)
i = ỹ

(k)
j = 1

}

S ←
{
i | ỹ(k)

i = 1
}

end while
Output: a maximal independent set S of G

As far as the analysis of ISHN is concerned, the following result states that the
algorithm converges, i.e., the sequence of Hopfield networks is finite.

Theorem 4.2. For every input graph G = 〈V, E〉, ISHN outputs a maximal
independent set of G after α · |E| iterations of the while cycle at most.

Proof. Let A = (aij)n×n be the adjacency matrix of G, α be a positive integer
and

Φk(y1, . . . , yn) = −
∑
i<j

w
(k)
ij yiyj + α

∑
i

yi

be the energy function of the network Rk constructed at the k-th step. Note that
(w(0)

ij)n×n = (aij)n×n, the adjacency matrix of G.
By induction on k it is easy to prove:

(1) if {i, j} �∈ E then w
(k)
ij = 0 for all k = 1, . . . , n;

(2) if {i, j} ∈ E then

1 = w
(0)
ij ≤ · · · ≤ w

(k)
ij ≤ · · · (4)

SOLVING MIS BY ASYNCHRONOUS DISTRIBUTED HOPFIELD-TYPE NN 377

To determine an upper bound to w
(k)
ij , let ỹ(k) be the attractor of the network Rk

initialized with ỹ(k−1); for any i = 1, . . . , n:

ỹ
(k)
i = HS

⎛
⎝−w

(k)
ij ỹ

(k)
j −

∑
s�=j

w
(k)
is ỹ(k)

s + α

⎞
⎠ . (5)

Under the hypothesis that {i, j} ∈ E and ỹ
(k)
i = ỹ

(k)
j = 1:

−w
(k)
ij −

∑
s�=j

w
(k)
is ỹ(k)

s + α ≥ 0 (6)

which implies
w

(k)
ij ≤ w

(k)
ij +

∑
s�=j

w
(k)
is ỹ(k)

s ≤ α.

So
w

(k)
ij ≤ α. (7)

and, by the updating rule of the algorithm,

w
(k+1)
ij = w

(k)
ij + 1. (8)

Obviously, the same result holds for j.
Now, Rk �= Rk−1 if and only if there is {i, j} ∈ E such that ỹ

(k)
i = ỹ

(k)
j = 1.

Therefore, by (8) and (7), the number of networks constructed by the algorithm
is at most α · |E|.

Let us show now that the output S is a maximal independent set. Let ỹ(h)

be the attractor of the last network Rh, so that S = {i | ỹ
(h)
i = 1} and ỹ

(h)
i =

HS(−∑
s w

(h)
is ỹ

(h)
s + α) for all i = 1, . . . , n. Because of the termination condition,

we know that
{
{i, j} | {i, j} ∈ E and ỹ

(h)
i = ỹ

(h)
j = 1

}
= ∅,

this implies that S is an independent set of G.
Let us suppose that S is not maximal, i.e., there is v �∈ S such that avs = 0 for

all s ∈ S. Then:

0 = ỹ(h)
v = HS

⎛
⎝−

∑
s∈S

avsỹ
(h)
s −

∑
s�∈S

w(h)
vs ỹ(h)

s + α

⎞
⎠ = HS (α) = 1. �

Remark 4.1. In ISHN neural networks are determined by a simple weights up-
dating rule: if two adjacent nodes are in the solution found by a network, the
weight of their edge is incremented by 1 in the following network.

It has been shown that the model of Hopfield networks solving optimization
problems with constraints can be improved with respect to the quality of the

378 G. GROSSI, M. MARCHI AND R. POSENATO

solutions and to the computation time if one considers the Augmented Lagrangian
variant of the Hopfield model [19], where the dilemma between the goal of finding
good quality solutions and the convergence necessity is effectively solved. In short,
given a problem:

min F (x)
x ∈ �n

subject to ci(x) = 0 i = 1, . . . , t
(9)

where F and ci are continuous functions, Augmented Lagrange methods transform
this problem into an equivalent one without constraints:

min L(x,m, ρ)
x,m ∈ �n (10)

where L is a Lagrange function with the same local extremum points of F , m is
the vector of Lagrange multipliers and ρ is the penalty factor of the method. For
example, a typical Augmented Lagrange quadratic function for the problem (9) is:

Lq(x,m, ρ) = F (x)−mT c(x) +
ρ

2
c(x)T c(x). (11)

To determine an optimal solution, the Augmented Lagrangian Hopfield Networks
method sets up an iterative process where, in each phase, a Hopfield network
is built to find a solution to the problem (10) where the vector m is given by an
external estimator and the value of ρ is fixed. It has been shown that the solution x
converges to the optimal point x∗ as m converges to the optimal m∗. So, it is
crucial to have a good multipliers estimator. As an example, a simple multipliers
estimator of the first order is given by

m(i+1) = m(i) − ρc(x(i)). (12)

To study the Augmented Lagrangian Hopfield Networks method for the MIS prob-
lem, we have built an Augmented Lagrangian Hopfield Networks algorithm with
an appropriate quadratic Lagrange function and an appropriate linear multipliers
estimator (ALHN algorithm) and we have experimentally compared its solutions
with ISHN solutions. The instances groups chosen for the test were the same used
in [11]. We have repeated the test for different initial values of m multipliers and
for different value of penalty factor ρ.

In all tests, ISHN solutions were better than the solutions calculated by ALHN

at 1% significance level, while the computation times of the latter were better by
an order of magnitude for almost all instances. For details, see Table 1. The
experiments suggest that for the MIS problem, ISHN can be considered more
effective than a quadratic Augmented Lagrange Hopfield Networks method with
respect to the quality of the solutions found.

Remark 4.2. As we will show in the experimental results section, the sequence
of networks obtained by ISHN is a necessary process in order to obtain a good
heuristic for the problem at hand. In particular, ISHN performs better than the

SOLVING MIS BY ASYNCHRONOUS DISTRIBUTED HOPFIELD-TYPE NN 379

standard GREEDY heuristic3, even if it requires more time to find a solution
(see Sect. 6). Even so, it can be shown that as the process of network building
progresses, the behavior of the networks tends to be that of the greedy. Since
the weights sequence tends to the input constant α, i.e., limk→∞ w

(k)
ij = α for all

{i, j} ∈ E, it is easy to prove that the network R with all the weights wij = α
has really the same behavior as the GREEDY heuristic. To conclude, we can
informally write:

lim
w

(k)
ij →α

ISHN = GREEDY.

5. DISHN: the distributed version of ISHN

The ISHN algorithm presented in the previous section is based on two proper-
ties of fundamental importance for the architecture of the distributed system we
now introduce:

(1) the neurons updating (during the evolution phase) depends only on the
state of the adjacent neurons;

(2) the weights updating is done locally by each neuron.

As a consequence, we can directly implement ISHN on a network of processors
p1, . . . , pn for which we wish to find a maximal independent set of processors (Dis-
tributed ISHN for MIS problem). With reference to the message passing system,
each processor pk is an independent processing unit which simulates the neuron k,
it keeps in memory the state of the neuron, the state of its neighbourhoods N (k)
(i.e., the adjacent processors) and the weights ws for all s ∈ N (k). It sends and
receives messages to and from its neighbours on dedicated two-way communication
channels.

Moreover, we assume that:

• the time is discrete and it is divided into units called TIME-SLICEs;
• the message delivering and receiving is done within a TIME-SLICE, while

the local computations are instantaneous (negligible time);
• the topology of the network is static and it is described by the graph (also

called communication graph) the nodes of which are the processors and
the edges are the communication channels;
• the processors do not refer to a global time, so the system is asynchronous.

The main difference between ISHN and DISHN lies in the updating rule of the
neurons. In the former case the updating rule is the sequential (asynchronous)
dynamics described by (2), while in the latter case it consists of partially synchro-
nous dynamics. In fact, for DISHN we adopt a weaker condition with respect to
the dynamics used in ISHN, in which each processor randomly chooses a time-slice

3The GREEDY heuristic sorts the vertices of the graph with respect to their degree, repeat-
edly picks a nodes in order and places it in the solution if it is not adjacent to any vertex already
present.

380 G. GROSSI, M. MARCHI AND R. POSENATO

from which to simulate the neuron activity. From the point of view of the Hopfield
model, since there is a positive probability to update linked neurons simultane-
ously, it is well known that the convergence to an equilibrium state (attractor)
may be compromised in favor of an oscillatory behavior. Nonetheless, this risk
does not compromise the whole convergence process to a valid solution for the
following two reasons.

First, the expected number of “neuron collisions” may be controlled through
the width of the temporal window in which to pick out the time-slice for to the
neuron updating. Let M be a positive integer representing the number of TIME-
SLICEs in which each processor picks out (with probability 1

M) the one for the
updating. Since the neuron connections (channels) agree with the set of edges E
of the graph describing the network topology, the expected number of collisions
is |E|

M , which is less than 1 when |E| < M . Therefore, by choosing M in order to
have no collisions, the expected behavior of DISHN is that of ISHN.

Second, even if the intermediate networks in the sequence {Rk}k≥0 do not reach
an attractor, thanks to the fact that the weights are incrementally updated (see
Th. 4.2, Eq. (8)), when they reaches the value α, also under the hypothesis that
the units involved are updated synchronously (a very little probability), they will
assume state 0, always assuring an admissible solution.

After these preliminary remarks, we now present in more details the DISHN

algorithm starting by a general description of the three phases in which it can be
logically divided.

Preparatory phase: To optimize the number of messages in the broadcast-
ing operations, we find a minimum spanning tree of the communication
graph that becomes the actual communication network used by the pro-
cessors to swap messages. The diameter D of the communication network
is at most n− 1 (the maximum length over all paths).

There are two kinds of messages that can circulate on the commu-
nication network: one called CHANGE-STATE, sent by a processor to
its neighbourhood when the neuron changes its state; the other, called
KEEP-ALIVE, which is broadcast on the communication network when
a processor detects a violation of the constraints. The number of KEEP-
ALIVE messages broadcast in this case is equal to the diameter of the
network. Please note that the messages size is 1 bit.

RUN phase: in this phase each processor simulates the neuron activity until
some criterion of stop execution occurs.

WAIT phase: in this phase each processor evaluates if a valid configuration
is reached. It waits for a fixed time “listening to” the network to capture
both the KEEP-ALIVE and CHANGE-STATE messages; when a message
arrives to the processor, the processor immediately switches to the RUN
phase, otherwise, after a fixed number of TIME-SLICEs (time-out), it
terminates the computation because the solution is found. This phase
is not necessary in the centralized version since the solution is totally
accessible, and therefore totally checkable by the central process.

SOLVING MIS BY ASYNCHRONOUS DISTRIBUTED HOPFIELD-TYPE NN 381

Figure 1. Phases of a processor that executes the DISHN.

Therefore, we say that a processor is in the RUN, WAIT or STOP state. The
dynamics by which the processor pk, during the execution, passes from one state
to the other is given by the pseudo-code of Algorithm 2.

Algorithm 2 DISHN for processor pk

building of a distributed spanning tree (communication network)
repeat

state ← RUN
if no constraint violations then

state ← WAIT
else

broadcast KEEP-ALIVE on the communication network
update the weights (relevant to the violations)
state ← RUN

end if
until state �= STOP

A temporal diagram of the processor phases is given in Figure 1.
Each processor executes independently from the others and changes its state

depending on the check done after a fixed time (number of neuron activations).
If there are no constraint violations it passes to the WAIT state, otherwise it
continues in the RUN state after doing the suitable weights updating. Through the
broadcast system, every processor is informed about possible constraints violations
occurred in other units. The time (number of TIME-SLICE) necessary to inform
every processor depends on the diameter of the network and on the length of the

382 G. GROSSI, M. MARCHI AND R. POSENATO

RUN phase. This system of notification allows every processor to determine when
the neural network has reached a stable state on the basis of the arrival time of
the last message.

Here is a detailed description of the RUN and WAIT phases with the relative
pseudo-code (Algorithm 3 and Algorithm 4).
RUN phase

• It consists of a sequence of N FRAMEs and each FRAME is divided into
a fixed number M of TIME-SLICEs. Within every FRAME the neuron
selects, with uniform probability, an activation TIME-SLICE in order to
recalculate its state. If the state changes, it sends the message CHANGE-
STATE to its neighbours, otherwise it will not do anything.
• The incoming KEEP-ALIVE messages are broadcast through the commu-

nication network; the incoming CHANGE-STATE message causes a local
memory change to hold the new state.
• At the end of this phase, if no violations with its neighbours occur, the

processor goes into the WAIT state, otherwise it modifies the weights
according to the weights updating rule.

Algorithm 3 DISHN: RUN phase for processor pk

state ← RUN
for i = 1 to N do

time clk ← 0
rand update ← random number in {1, . . . , M}
for j = 1 to M do

time clk ← time clk + 1
if msg KEEP-ALIVE is arrived then

propagate KEEP-ALIVE on communication network
end if
if time clk = rand update then

old state ← neuron state

neuron state ← HS

⎛
⎝−

∑
s∈N (k)

ws · neuron states + α

⎞
⎠

if neuron state �= old state then
sends CHANGE-STATE to neighbourhood

end if
end if

end for
end for

WAIT phase
• In the WAIT phase the processor waits for incoming messages. When a

message KEEP-ALIVE or CHANGE-STATE arrives, the processor sends
the KEEP-ALIVE message and it starts a new RUN phase. In case of
CHANGE-STATE it stores the state of the neighbour in its local memory.

SOLVING MIS BY ASYNCHRONOUS DISTRIBUTED HOPFIELD-TYPE NN 383

• If no message arrives within a fixed time interval (STOP-WINDOW), then
the processor enters into the STOP state and it stops.

Finally, we have investigated the worst case time complexity of DISHN. By as-
suming that in each communication round every processor is allowed to send a
message to each of its neighbours, the time complexity is the number of rounds
the algorithm needs to solve the problem. There are three factors that concur to
determine this value: the worst case number of networks α|E| (given in Th. 4.2),
the number M of TIME-SLICEs in the RUN phase and the number M + D of
TIME-SLICEs in the WAIT phase.

Algorithm 4 DISHN: WAIT phase for processor pk

state ← WAIT
time clk ← 0
while time clk < STOP-WINDOW do

time clk ← time clk + 1
if msg KEEP-ALIVE or CHANGE-STATE arrive then

propagate KEEP-ALIVE on communication network
go to RUN phase

end if
end while
state ← STOP

In conclusion, assuming that the number of expected neuron collisions is less
then one and using the upper bound of D, we have that:

#rounds = α|E|(2M + D) ≤ 2α(n− 1)|E|2.

Therefore, for sparse graphs, i.e. such that |E| = O(n), we have a complex-
ity O(n3), while for dense graphs, i.e. when |E| = Ω(n2), we have a time com-
plexity O(n5) in the worst case.

In the following section, we will experimentally show that the assessment of the
number of rounds obtained in the worst case is rather pessimistic.

6. Simulation results

In this section we present an experimental analysis of the behaviour of DISHN

based on two types of computer simulations.
The goal of the first type of simulations is to compare ISHN

4 with the AS-MISP

heuristic [18], built by means of a recent technique inspired by the behaviour of
colonies of real ants [6], and with ALHN, the variant based on the augmented

4Performances of ISHN have been already shown to be good in [11], in which it was compared
with many other well known heuristics for MIS presented at the second DIMACS implementation
challenge [16].

384 G. GROSSI, M. MARCHI AND R. POSENATO

Lagrange multipliers in order to complete the experimental analysis of the model.
We have chosen AS-MISP because in [18] there is a wide comparison between

AS-MISP and other heuristics such as the genetic algorithm of Bäck and Khuri
[1] and the GRASP program of Feo et al. [8].

The goal of second type of simulations is twofold. First, it is to verify that
the DISHN performances do not vary significantly when compared to the ISHN

ones: the migration from the centralized model to the distributed one does not
alter the solution quality. Second, it is to compare DISHN with other well-known
distributed heuristics, such as the GREEDY algorithm and the FCSS (Fault-
Containing Self-Stabilizing) algorithm [15]. GREEDY is the best known and
most widely-used algorithm in distributed environments [12]. FCSS is a fault-
containing self-stabilizing algorithm that finds a maximal independent set for an
asynchronous distributed system and exhibits a O(∆) stabilization time, where ∆
is the maximum node degree in the system [15]. In [15], the authors claim that
“FCSS algorithm can be considered to be the most efficient fault-containing self-
stabilizing algorithm for the maximal independent set finding up to this point”. We
compare our algorithm with FCSS even if the latter is designed for the Maximal
(no Maximum) Independent Set problem because we wish provide experimental
evidence that our algorithm approximate solutions are always better than exact
solutions of a very efficient distributed algorithm for the previously mentioned
easier variant of the problem.

We concentrate our analysis on the goodness of solutions, on the number of
rounds (time complexity) and on the number of messages (message complexity)
required by the algorithm to find a legal solution.

With regard to the solution quality, Table 1 reports the most interesting results
obtained on a group of instances given by the so-called p-random graphs5. The
first group of algorithms (AS-MISP, ALHN and ISHN) have been run as central-
ized process, the second group (GREEDY, FCSS and DSHN) have been run as
distributed process. For each type of instances, we have considered a set of 30 ran-
dom instances. The data reported in the table are the maximum and the average
values respectively found for each set of instances. The average values are given
at 99% confidence level. Moreover, we have evaluated the one-sided null hypothe-
sis H0 that the average results of GREEDY are better then those of DSHN. The
experimental results show that it is possible to reject the null hypothesis at 1%
significance level.

With respect to the performance of ALHN, we have noted that the results of
DISHN are always better than those of ALHN even for instances proposed in
[18]. The results indicate that DISHN and ISHN perform slightly better than
AS-MISP and outperform all the other heuristics.

We have implemented all algorithms in C language, compiled by gcc 3.2 and
the simulations have been executed on a workstation with Pentium IV 2.0 GHz
processor, 512MB RAM and Linux 2.4.20 operating system.

5A p-random graphs of size n is a graph 〈V, E〉 where V = {1, . . . , n} and E is obtained
selecting {i, j} as edge with probability p (1 ≤ i < j ≤ n and 0 ≤ p ≤ 1).

SOLVING MIS BY ASYNCHRONOUS DISTRIBUTED HOPFIELD-TYPE NN 385

Table 1. Simulations results on different p-random graphs. The
“Mn-p” label represents a group of 30 p-graphs of size n, “max”
the MIS maximum size found among all graphs and “µ” the MIS
average size calculated at 99% confidence level. For brevity, the
confidence interval is shown only for the first two best distributed
algorithms: Greedy and DSHN. In the two groups of heuristics,
the best averages are in bold face.

Centralized algorithms Distributed algorithms

Instances AS-MISP ALHN ISHN GREEDY FCSS DSHN

max µ max µ max µ max µ max µ max µ

M200-0.2 25 22.6 22 20.4 25 22.7 21 19.70 ± 0.46 20 16.6 25 22.87 ± 0.39

M200-0.5 11 10.0 10 8.8 12 10.3 9 8.10 ± 0.37 9 7.0 12 10.40 ± 0.25

M200-0.6 9 8.2 8 6.9 10 8.7 9 6.83 ± 0.38 7 5.7 10 8.53 ± 0.29

M200-0.83 5 5.0 5 4.2 6 5.1 5 4.17 ± 0.23 4 3.5 6 5.07 ± 0.13

M200-0.9 5 4.0 5 3.6 4 4.1 4 3.37 ± 0.24 4 3.0 4 4.13 ± 0.17

M400-0.2 28 26.3 27 24.2 30 27.8 27 22.97 ± 0.72 22 19.1 30 27.97 ± 0.43

M400-0.5 12 11.1 10 9.8 13 12.2 11 9.47 ± 0.41 10 8.5 13 11.97 ± 0.25

M400-0.6 9 9.0 8 7.9 11 9.8 9 7.43 ± 0.34 8 6.8 10 9.80 ± 0.20

M400-0.83 6 5.4 5 4.5 6 6.0 6 4.43 ± 0.31 5 3.8 6 6.00 ± 0.00

M400-0.9 5 4.3 4 3.9 5 5.0 4 3.60 ± 0.24 4 3.1 5 4.97 ± 0.09

M600-0.2 31 28.3 27 25.7 31 30.1 28 24.80 ± 0.71 23 21.3 31 30.13 ± 0.45

M600-0.5 13 11.6 12 10.7 13 12.9 11 9.90 ± 0.43 12 8.7 13 12.90 ± 0.15

M600-0.6 10 9.3 10 8.4 11 10.6 9 7.97 ± 0.31 9 7.0 11 10.60 ± 0.25

M600-0.83 6 5.8 6 5.1 7 6.4 5 4.50 ± 0.25 5 4.2 6 6.00 ± 0.00

M600-0.9 5 4.7 4 4.0 6 5.1 4 3.73 ± 0.22 4 3.2 5 5.00 ± 0.00

M800-0.2 32 29.8 28 27.1 33 31.8 31 26.47 ± 0.68 26 22.9 33 31.80 ± 0.31

M800-0.5 13 12.2 12 10.8 15 13.7 12 10.43 ± 0.36 11 9.1 15 13.60 ± 0.25

M800-0.6 11 9.3 10 9.0 12 11.1 9 8.40 ± 0.25 9 7.4 12 11.10 ± 0.15

M800-0.83 6 6.0 6 5.2 7 6.4 6 4.77 ± 0.25 5 4.3 7 6.40 ± 0.25

M800-0.9 5 4.3 5 4.1 6 4.9 5 4.07 ± 0.23 4 3.4 5 5.00 ± 0.00

M1000-0.2 33 31.1 29 27.8 35 33.5 30 26.90 ± 0.68 26 23.9 35 33.53 ± 0.37

M1000-0.5 13 12.5 12 11.3 14 13.8 12 10.53 ± 0.41 12 9.6 14 13.90 ± 0.15

M1000-0.6 12 10.2 10 9.3 12 11.6 10 8.40 ± 0.31 9 7.5 11 11.00 ± 0.00

M1000-0.83 7 6.0 6 5.4 7 6.5 6 5.03 ± 0.26 5 4.2 7 6.70 ± 0.23

M1000-0.9 5 5.0 5 4.2 6 5.2 5 4.23 ± 0.28 5 3.5 6 5.40 ± 0.25

To give an idea of the actual time complexity, we have included a chart (Fig. 2)
showing the number of rounds required by DISHN for various graph sizes and
densities. Please note that the number of rounds increases with both the size and
the density; therefore, the best performances can be obtained on sparse graphs,
i.e., graphs having a density less than 20% of the maximum number of edges.

386 G. GROSSI, M. MARCHI AND R. POSENATO

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 200 400 600 800 1000

#r
ou

nd

|V|

p=.9
p=.83

p=.6
p=.5
p=.2

Figure 2. Graph size vs. #rounds required by DISHN for dif-
ferent graph density (p = 0.2, 0.5, 0.6, 0.83, 0.9).

|E|

#msg

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 200 400 600 800 1000
|V|

p=.9
p=.83

p=.6
p=.5
p=.2

Figure 3. Graph size vs. #msg/|E| required by DISHN for
different graph density (p = 0.2, 0.5, 0.6, 0.83, 0.9).

As far as the message complexity is concerned, we have included the average
number of messages for channel in Figure 3. Similarly to the previous parameter,
this ratio increases with the size and the density of the graph and, consequently,
the performances are better for low density graphs.

SOLVING MIS BY ASYNCHRONOUS DISTRIBUTED HOPFIELD-TYPE NN 387

7. Conclusions

In this paper, an asynchronous distributed not-deterministic algorithm for the
MIS problem is proposed together with some computer simulation showing the
goodness of the solutions found. The algorithm uses Hopfield-type neural networks
in which the neurons behaviour is simulated by independently running processors.
The time and message complexity analysis shows that the lower the graph density,
the better the performances.

Further work must be done in order to generalize the distributed algorithm for
topology that changes dynamically, as in the peer-to-peer mobile network frame-
work. From a theoretical point of view, the model is robust against any changing
of the neighbourhood of neurons since the sequence of networks always guarantees
the convergence of the system. However, a better knowledge about the system
behaviour when the network topology changes may be obtained by means of an
intensive experimental analysis.

A problem closely connected with MIS is the problem concerning the search of
the minimum set of vertices of a graph such that every edge of the graph has at
least one of its end points in the set. This problem is known as Minimum Vertex
Cover. It is easy to show that this problem can be solved approximately by the
neural system described here.

References

[1] T. Bäck and S. Khuri, An evolutionary heuristic for the maximum independent set problem,
in Proc. First IEEE Conf. Evolutionary Computation, IEEE World Congress on Computa-
tional Intelligence, edited by Z. Michalewicz, J.D. Schaffer, H.-P. Schwefel, D.B. Fogel and
H. Kitano, Orlando FL, June 27–29. IEEE Press, Piscataway NJ 2 (1994) 531–535.

[2] S. Basagni, Finding a maximal weighted independent set in wireless networks. Telecommu-
nication Systems, Special Issue on Mobile Computing and Wireless Networks 18 (2001)
155–168.

[3] R. Battiti and M. Protasi, Reactive local search for the maximum clique problem. Algorith-
mica 29 (2001) 610–637.

[4] A. Bertoni, P. Campadelli and G. Grossi, A neural algorithm for the maximum clique
problem: Analysis, experiments and circuit implementation. Algoritmica 33 (2002) 71–88.

[5] I.M. Bomze, M. Budinich, M. Pelillo and C. Rossi, Annealed replication: A new heuristic
for the maximum clique problem. Discrete Appl. Math. 121 (2000) 27–49.

[6] M. Dorigo, G. Di Caro and L.M. Gambardella, Ant algorithms for discrete optimization.
Artificial Life 5 (1996) 137–172.

[7] U. Feige, S. Goldwasser, S. Safra, L. Lovàsz and M. Szegedy, Approximating clique is almost
NP-complete, in Proceedings of the 32nd Annual IEEE Symposium on the Foundations of
Computer Science (1991) 2–12.

[8] T.A. Feo, M.G.C. Resende and S.H. Smith, Greedy randomized adaptive search procedure
for maximum independent set. Oper. Res. 41 (1993).

[9] M. Gerla and J.T.-C. Tsai, Multicluster, mobile, multimedia radio network. Wireless Net-
works 1 (1995) 255–265.

[10] W. Goddard, S.T. Hedetniemi, D.P. Jacobs and P.K. Srimani, Self-stabilizing protocols for
maximal matching and maximal independent sets for ad hoc networks, in Workshop on
Advances in Parallel and Distributed Computational Models (2003).

388 G. GROSSI, M. MARCHI AND R. POSENATO

[11] G. Grossi and R. Posenato, A distributed algorithm for max independent set problem based
on Hopfield networks, in Neural Nets: 13th Italian Workshop on Neural Nets (WIRN 2002),
edited by M. Marinaro and R. Tagliaferri. Springer-Verlag. Lect. Notes Comput. Sci. 2486
(2002) 64–74.

[12] M.M. Halldórsson and J. Radhakrishnan, Greedy is good: Approximating independent sets
in sparse and bounded-degree graphs. Algorithmica 18 (1997) 145–163.

[13] J. H̊astad, Clique is hard to approximate within n1−ε, in Proc. of the 37rd Annual IEEE
Symposium on the Foundations of Computer Science (1996) 627–636.

[14] J.J. Hopfield, Neural networks and physical systems with emergent collective computational
abilities, in Proceedings of the National Academy of Sciences of the United States of America
79 (1982) 2554–2558.

[15] L. Ji-Cherng and T.C. Huang, An efficient fault-containing self-stabilizing algorithm for
finding a maximal independent set. IEEE Transactions on Parallel and Distributed Systems
14 (2003) 742–754.

[16] D.S. Johnson and M.A. Trick, Cliques, Coloring, and Satisfiability: Second DIMACS Imple-
mentation Challenge. DIMACS Series in Discrete Mathematics and Theoretical Computer
Science. American Mathematical Society (1996).

[17] R.M. Karp, Reducibility among Combinatorial Problems. Complexity of Computer Compu-

tations. Plenum Press, New York (1972) 85–103.
[18] G. Leguizam’on, Z. Michalewicz and M. Sch”utz, An ant system for the maximum indepen-

dent set problem, in Proceedings of VII Argentine Congress of Computer Science (CACIC
2001) (2001).

[19] S.Z. Li, Improving convergence and solution quality of Hopfield-type neural networks with
augmented Lagrange multipliers. IEEE Trans. Neural Networks 7 (1996) 1507–1516.

[20] E. Marchiori, A simple heuristic based genetic algorithm for the maximum clique problem,
in Proc. ACM Symp. Appl. Comput (1998) 366–373.

[21] C.H. Papadimitriou, Computational Complexity. Addison-Wesley (1994).

To access this journal online:
www.edpsciences.org

