
Everything is digital...

How to transmits on the net and live happily

Data coding

- ◆ Digital computers can handle only binary signals: sequences of 0 and 1 (bit = binary digit)
- In order to transform data by digital computers, it needs to **digitalize** data, i.e. transform real samples (images, sound, etc.) into sequences of bits, packed for technological and hostorical reasons into group of 8 bit, called bytes.
- The meaning of a sequence is given by the **format** used to code and interpreter the sequence, eg. ASCII, bitmap, mp3.

Digitalization

- Digitalization process loss informations due to the fact that you are taking only a finite sampled rappresentation of the original analog data.
- After digitalization, the information is expressed by a sequence of bits and code by some format that can contains some redoundance. By loss-less compression tecniques you can srink your data near to the teoretical minimal amount of bits needs to represent it (for eg. png format).
- Accepting some loose of information, by a loss compression tecniques, you can obtain a more srinked version respect to the teoretical limit (for eg. jpeg format for images).

Coding Text

Bit, Byte, ASCII, UTF-8,...

- **▶ Bit**: BInary digiT, a flag that can assume two values, 0 or 1.
- Byte: 8 bits, the "atom" of the information on PCs.
- **♦ ASCII**: a way to code char with 7 bits, ex:

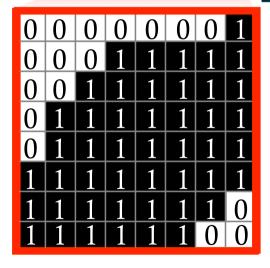
010.0000 means <space>
100.0000 means '@'
100.0100 100.1111 100.0111 means "DOG"

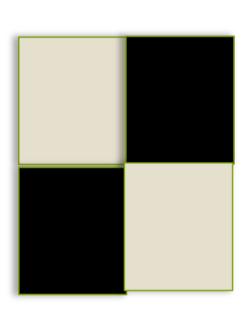
- try on google "ASCII TABLE"
- **UTF-8**: a way to code a lot of char with 1 to 4 bytes:
 - try on google "UTF-8"

Coding Images

From pixels to images

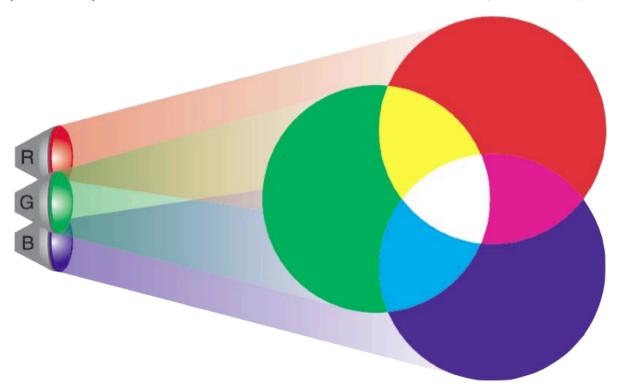
bitmap

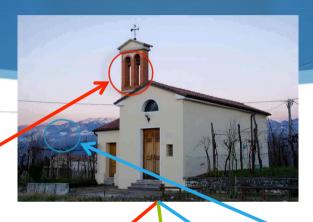

From pixels to images


bitmap

0	0	0	0	0	0	0	1
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	1	1	1	1	1	1
0	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	0
1	1	1	1	1	1	0	0

From pixels to images


bitmap



Coloring is Addictive

♦ All (visible) colors are combination of Red, Green, Blue

RGB Color Channels

RGB image

blue dominant

red dominant

Red Chanel

Green Chanel

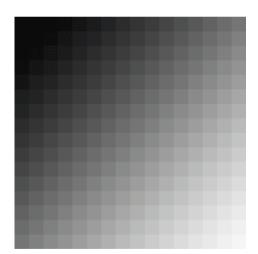
Blue Chanel

Resolution and Color Depth

- Resolution: number of pixel composing the image:
 - 1024 column x 768 rows = 786.432 pixel
- Color Depth: number of bit used for pixel color:
 - Black And White: 1 bit/pixel

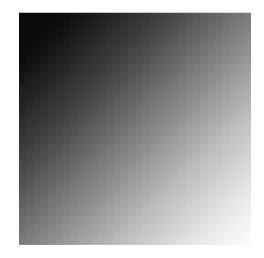
 - 0=white
 - True color: 24bit/pixel (8 for red, 8 for green, 8 for blue)
 - ♦ 0000.0000 0000.0000 0000.0000 = black
 - ◆ 0000.0000 1111.1111 0000.0000 = green ■
 - 1111.1111 1111.1111 1111.1111 = white

Coding color with RGB


- ▶ **RGB**: color is a combination of **Red**, **G**reen and **B**lue, (notation based on human perception and oriented to monitor devices)
- Each visible color can be obtained by addictively mix the basic color components Red, Green and Blue with a given ratio.
- - try: https://www.w3schools.com/colors/colors_rgb.asp
- The set of the possible component values defines our capacity to express color variations (color depth)

4	HTML Web Safe Colors											
	#000000	#000033	#000066	#000099	#0000CC	#0000FF	#990000	#990033	#990066	#990099	#9900CC	#9900FF
	0,0,0	0,0,51	0,0,102	0,0,153	0,0,204	0,0,255	153,0,0	153,0,51	153,0,102	153,0,153	153,0,204	153,0,255
	#003300	#003333	#003366	#003399	#0033CC	#0033FF	#993300	#993333	#993366	#993399	#9933CC	#9933FF
	0,51,0	0,51,51	0,51,102	0,51,153	0,51,204	0,51,255	153,51,0	153,51,51	153,51,102	153,51,153	153,51,204	153,51,255
	#006600	#006633	#006666	#006699	#0066CC	#0066FF	#996600	#996633	#996666	#996699	#9966CC	#9966FF
	0,102,0	0,102,51	0,102,102	0,102,153	0,102,204	0,102,255	153,102,0	153,102,51	153,102,102	153,102,153	153,102,204	153,102,255
	#009900	#009933	#009966	#009999	#0099CC	#0099FF	#999900	#999933	#999966	#999999	#9999CC	#9999FF
	0,153,0	0,153,51	0,153,102	0,153,153	0,153,204	0,153,255	153,153,0	153,153,51	153,153,102	153,153,153	153,153,204	153,153,255
	#00CC00	#00CC33	#00CC66	#00CC99	#00CCCC	#00CCFF	#99CC00	#99CC33	#99CC66	#99CC99	#99CCCC	#99CCFF
	0,204,0	0,204,51	0,204,102	0,204,153	0,204,204	0,204,255	153,204,0	153,204,51	153,204,102	153,204,153	153,204,204	153,204,255
	#00FF00	#00FF33	#00FF66	#00FF99	#00FFCC	#00FFFF	#99FF00	#99FF33	#99FF66	#99FF99	#99FFCC	#99FFFF
	0,255,0	0,255,51	0,255,102	0,255,153	0,255,204	0,255,255	153,255,0	153,255,51	153,255,102	153,255,153	153,255,204	153,255,255
	#330000	#330033	#330066	#330099	#3300CC	#3300FF	#CC0000	#CC0033	#CC0066	#CC0099	#CC00CC	#CC00FF
	51,0,0	51,0,51	51,0,102	51,0,153	51,0,204	51,0,255	204,0,0	204,0,51	204,0,102	204,0,153	204,0,204	204,0,255
	#333300	#333333	#333366	#333399	#3333CC	#3333FF	#CC3300	#CC3333	#CC3366	#CC3399	#CC33CC	#CC33FF
	51,51,0	51,51,51	51,51,102	51,51,153	51,51,204	51,51,255	204,51,0	204,51,51	204,51,102	204,51,153	204,51,204	204,51,255
	#336600	#336633	#336666	#336699	#3366CC	#3366FF	#CC6600	#CC6633	#CC6666	#CC6699	#CC66CC	#CC66FF
	51,102,0	51,102,51	51,102,102	51,102,153	51,102,204	51,102,255	204,102,0	204,102,51	204,102,102	204,102,153	204,102,204	204,102,255
	#339900	#339933	#339966	#339999	#3399CC	#3399FF	#CC9900	#CC9933	#CC9966	#CC9999	#CC99CC	#CC99FF
	51,153,0	51,153,51	51,153,102	51,153,153	51,153,204	51,153,255	204,153,0	204,153,51	204,153,102	204,153,153	204,153,204	204,153,255
8	#33CC00	#33CC33	#33CC66	#33CC99	#33CCCC	#33CCFF	#CCCC00	#CCCC33	#CCCC66	#CCCC99	#CCCCCC	#CCCCFF
	51,204,0	51,204,51	51,204,102	51,204,153	51,204,204	51,204,255	204,204,0	204,204,51	204,204,102	204,204,153	204,204,204	204,204,255
	#33FF00	#33FF33	#33FF66	#33FF99	#33FFCC	#33FFFF	#CCFF00	#CCFF33	#CCFF66	#CCFF99	#CCFFCC	#CCFFFF
	51,255,0	51,255,51	51,255,102	51,255,153	51,255,204	51,255,255	204,255,0	204,255,51	204,255,102	204,255,153	204,255,204	204,255,255
	#660000	#660033	#660066	#660099	#6600CC	#6600FF	#FF0000	#FF0033	#FF0066	#FF0099	#FF00CC	#FF00FF
	102,0,0	102,0,51	102,0,102	102,0,153	102,0,204	102,0,255	255,0,0	255,0,51	255,0,102	255,0,153	255,0,204	255,0,255
	#663300	#663333	#663366	#663399	#6633CC	#6633FF	#FF3300	#FF3333	#FF3366	#FF3399	#FF33CC	#FF33FF
	102,51,0	102,51,51	102,51,102	102,51,153	102,51,204	102,51,255	255,51,0	255,51,51	255,51,102	255,51,153	255,51,204	255,51,255
	#666600	#666633	#666666	#666699	#6666CC	#6666FF	#FF6600	#FF6633	#FF6666	#FF6699	#FF66CC	#FF66FF
	102,102,0	102,102,51	102,102,102	102,102,153	102,102,204	102,102,255	255,102,0	255,102,51	255,102,102	255,102,153	255,102,204	255,102,255
	#669900	#669933	#669966	#669999	#6699CC	#6699FF	#FF9900	#FF9933	#FF9966	#FF9999	#FF99CC	#FF99FF
	102,153,0	102,153,51	102,153,102	102,153,153	102,153,204	102,153,255	255,153,0	255,153,51	255,153,102	255,153,153	255,153,204	255,153,255
	#66CC00	#66CC33	#66CC66	#66CC99	#66CCCC	#66CCFF	#FFCC00	#FFCC33	#FFCC66	#FFCC99	#FFCCCC	#FFCCFF
	102,204,0	102,204,51	102,204,,102	102,204,153	102,204,204	102,204,255	255,204,0	255,204,51	255,204,102	255,204,153	255,204,204	255,204,255
	#66FF00	#66FF33	#66FF66	#66FF99	#66FFCC	#66FFFF	#FFFF00	#FFFF33	#FFFF66	#FFFF99	#FFFFCC	#FFFFFF
	102,255,0	102,255,51	102,255,102	102,255,153	102,255,204	102,255,255	255,255,0	255,255,51	255,255,102	255,255,153	255,255,204	255,255,255
	#000000	#333333	#666666	#999999	#CCCCCC	#FFFFFF	#FF0000	#00FF00	#0000FF	#FFFF00	#FF00FF	#00FFFF
	0,0,0	51,51,51	102,102,102	153,153,153	204,204,204	255,255,255	255,0,0	0,255,0	0,0,255	255,255,0	255,0,255	0,255,255
	www.beginnersguidetohtml.com											

♦ Try on Google: "RGB table"


Color Depth vs Size

♦ An example of B/W image with different gray-scale palette

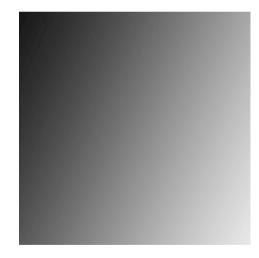

Resolution:512x512 Color depth: 8bit

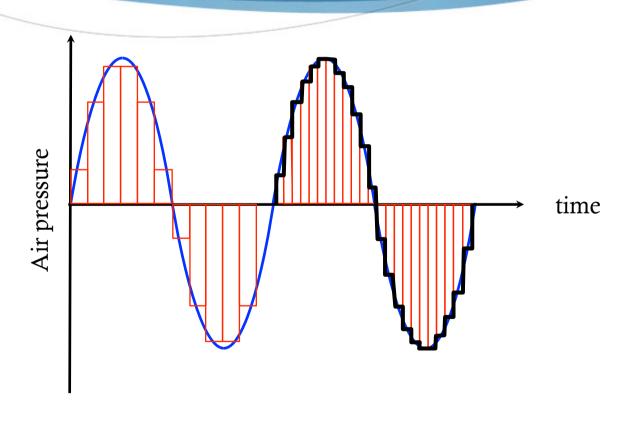
Image size: 262144 bytes

Resolution:512x512
Color depth: 10 bit

Image Size: 327680 bytes

Resolution:512x512 Color depth: 16bit

Image size: 524288 bytes


Other Color Spaces

- ♦ There are other many way to "code" colors; a short list:
 - ♦ HSV and HSL: color is a combination of Hue, Saturation and (V)brightness/L uminance (notation oriented to color perception, image manipulation)
 - **CMYK**: color is a combination of Cyan, Magenta, Yellow, blac**K**, oriented to print process by ink.
 - **RAL**: used in industries.

Reference: https://en.wikipedia.org/wiki/List_of_color_spaces_and_their_uses

Coding Sounds

Sampling and the Nyquist rule

Nyquist rule

"In order to sample a looped signal, it is necessary to use a sampling rate of at least twice the maximum signal frequency"

Example:

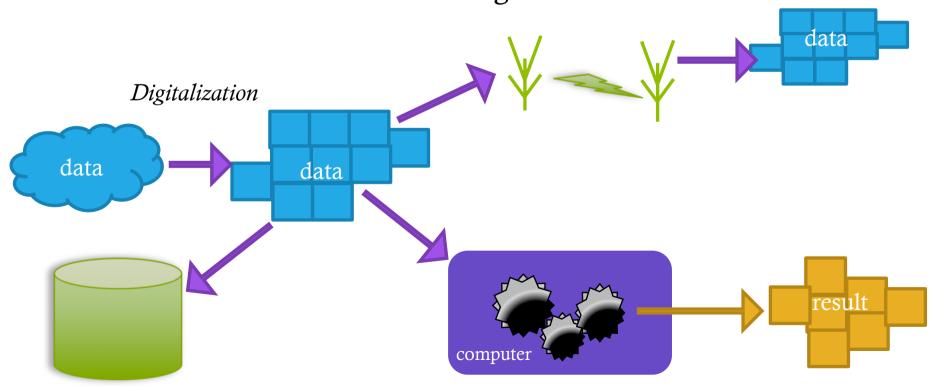
- sampling at CD quality: 44khz
- ♦ Max audible frequency: 20khz

Coding Codes

Coding for humans

```
/* Hello World C-Language program */
#include<stdio.h>
main()
{
    printf("Hello World\n");
}
```

Coding for (not so) humans


Coding for CPU

♦ CPU languages are made by sequence of bytes:

```
/* Byte Code piece from hello.c */
....
4000561: 4c 29 e5
: 31 db
: 48 c1 fd 03
: 48 83 ec 08
```

Digitalization: the new world

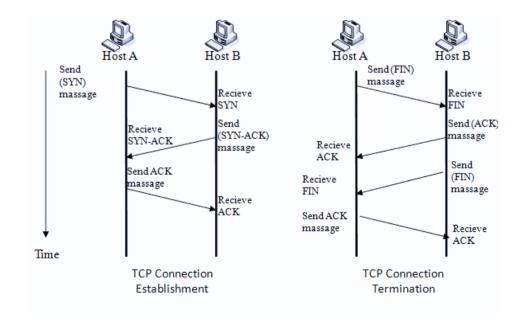
◆ The digitization of the contents has allowed the automatic processing and transmission over long distances and the low-cost conservation of knowledge

"Just think about it. Our whole world is sitting there on a computer."

Angela Bennett

Packet Transmission on the Net

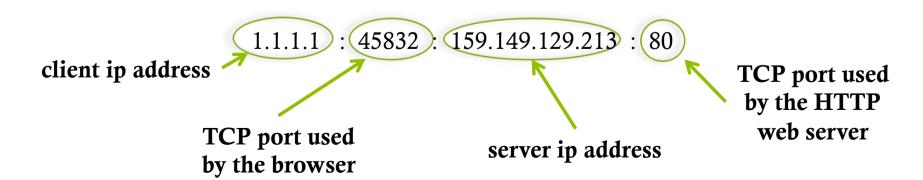
- Internet is self-organized meshed network.
- ♦ Internet transmits data by divide it in small packets of bytes.
- Each end-point have a worldwide unique address that can be used to reach it on the net (ipv4,ipv6 addressing)
- Each packet follows its own route through the net by jump from one node to another; the jump directions are locally decided by the traversing nodes in a best-effort logic.
- The target node have the duty to reconstruct the sequence (if need).


Internet 8.8.8.8 1.1.1.1 1.1.1.2 159.149.129.213

Adressing nodes: IPv4 and IPv6

- Each **public** node on the have its own unique address
- Each node on the net have a route for any possible destination; these routes are self-discovered and refreshed.
- IPv4 address are in the form of:
 - **<byte>.<byte>.<byte>.** for eg. 159.149.129.213
- Every possible IPv4 address has been already assigned to someone. Due to this problem, it has been proposed a new addressing schema, IPv6:
 - *♦* 2001:0db8:0000:0000:0000:ff00:0042:8329

Transmission Control Protocol


◆ Transmission Control Protocol (**TCP**): permits to establish stable conversations.

TCP session

- ◆ TCP use a number fro 0 to 65535 to identify services and client program inside node
- ▲ TCP cornversation between two node is identified by the session:

<ip_source>:<tcp_port_src>:<ip_dest>:<tcp_port_dest>

User Datagram Protocol

- User Datagram Protocol (UDP) is a protocol for conversation in which the delivery of every packet and the reconstruction of the correct sending sequence is not mandatory.
- ▶ It use the same TCP schema for identify a conversation:
 - <ip_source>:<udp_port_src>:<ip_dest>:<udp_port_dest>
- Because there are less overhead informationi respect to TCP, it permits a more efficient transmission.

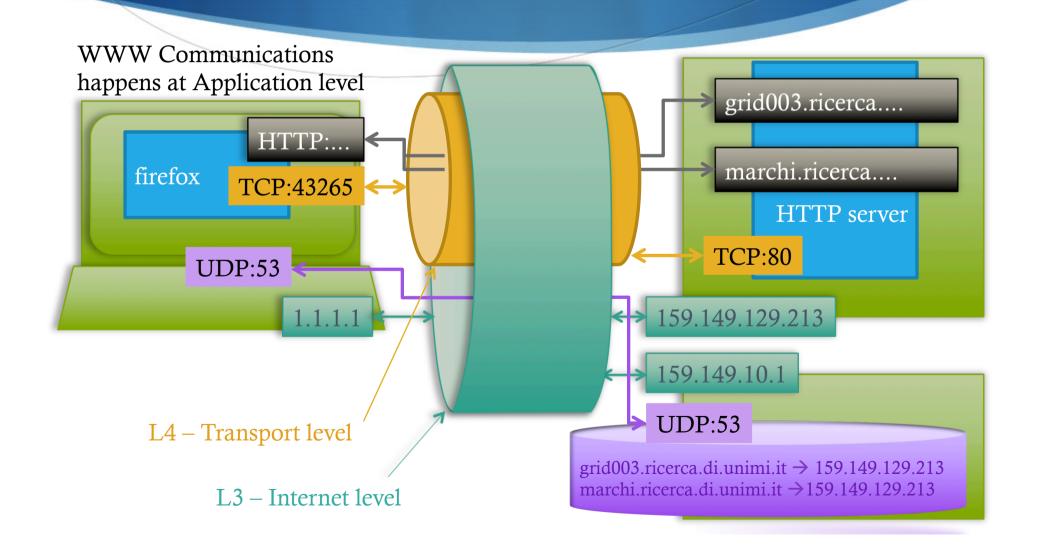
Domain Name System

- ♦ The Domain Name System permits (among other stuff) to resolve symbolic name into IPv4 address
- Any existing domain is resolved by a dedicated server; DNS servers are organised in a hierarchical schema.
- When a client needs to resolve a name, it query its own configured DNS server

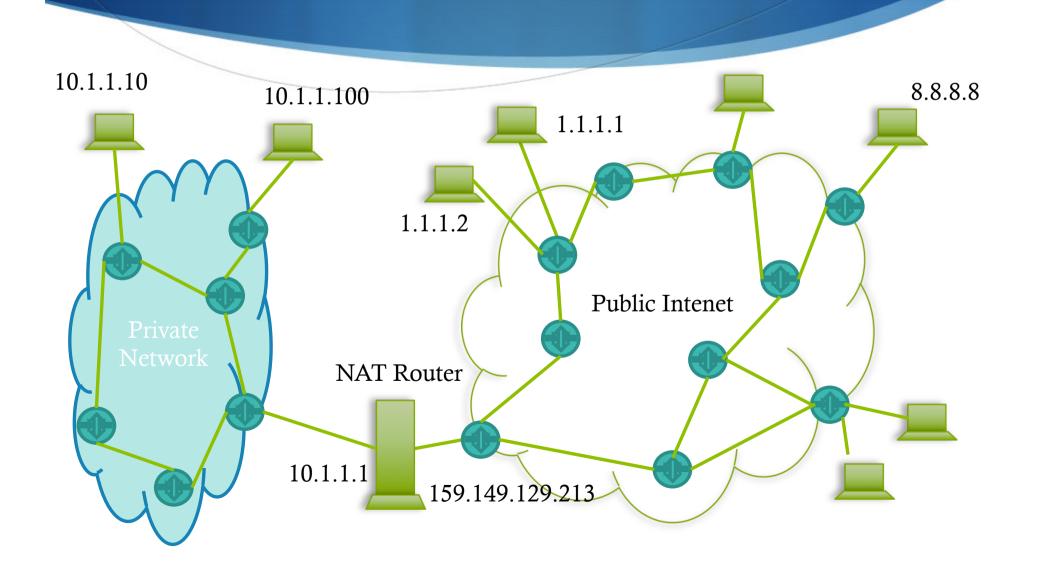
ns.unimi.it 159.149.10.1

Doman: unimi.it

.


grid003.ricerca.di.unimi.it → 159.149.129.213 marchi.ricerca.di.unimi.it →159.149.129.213

....


Hyper Text Transport Protocol

- ♦ Hyper Text Transport Protocol (HTTP) and its secure versione (HTTPS) permit to transfert information between browser and a web server.
- The server TCP port is used to select a particular web server process running on the server (they can be many, usually two: the HTTP and the HTTPS server processes)
- The symbolic name used in the address bar is used to select a specific site inside the selected web server (they can be many)

WWW communications

Network Address Translation

